Two Potential Biomarkers Identified in Mesenchymal Stem Cells and Leukocytes of Patients with Sporadic Amyotrophic lateral Sclerosis
نویسندگان
چکیده
Amyotrophic lateral sclerosis (ALS) is a fatal, neurodegenerative disorder caused by degeneration of motor neurons. The cause for most cases of ALS is multi-factorial,this enhances the need to characterize and isolate specific biomarkers found in biological samples from ALS patients. To this end we use human mesenchymal stem cells (hMSC) derived from the bone marrow of six ALS patients (ALS hMSC) and identified two genes, Cytoplasmic FMR Interacting Protein 2 (CyFIP2) and Retinoblastoma (Rb) Binding Protein 9 (RbBP9) with a significant decrease in post transcriptional A to I RNA editing compared to hMSC of healthy individuals. At the transcriptional level we show abnormal expression of these two genes in ALS hMSC by quantitative real time-PCR (qRT-PCR) and Western blot suggesting a problem in the regulation of these genes in ALS. To strengthen this view we tested by qRT-PCR the expression of these genes in peripheral blood leukocytes (PBL) isolated from blood samples of 17 ALS patients and found that CyFIP2 and RbBP9 levels of expression were significantly different compared to the levels of expression of these two genes in 19 normal PBL samples. Altogether we found two novel ALS potential biomarkers in non-neural tissues from ALS patients that may have direct diagnostic and therapeutic implications to the disease.
منابع مشابه
Characterization of human sporadic ALS biomarkers in the familial ALS transgenic mSOD1(G93A) mouse model.
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder of motor neurons. Although most cases of ALS are sporadic (sALS) and of unknown etiology, there are also inherited familial ALS (fALS) cases that share a phenotype similar to sALS pathological and clinical phenotype. In this study, we have identified two new potential genetic ALS biomarkers in human bone marrow mesenchyma...
متن کاملO19: Advances in the Treatment and Limitations of Cell Therapy in Neurodegenerative Diseases
Neurodegenerative diseases are the hereditary and sporadic diseases which are characterized by progressive neuronal loss of the nervous system and are emerging as the leading cause of death, disabilities, and a socioeconomic burden due to an increase in life expectancy. There are many neurodegenerative diseases including Alzheimer’s disease, Parkinson’s, disease, amyotrophic lateral...
متن کاملAn Iranian familial amyotrophic lateral sclerosis pedigree with p.Val48Phe causing mutation in SOD1: a genetic and clinical report
Objective(s): Amyotrophic lateral sclerosis (ALS), a fatal progressive neurodegenerative disorder, is the most common motor neuron disease in European populations. Approximately 10% of ALS cases are familial (FALS) and the other patients are considered as sporadic ALS (SALS). Among many ALS causing genes that have been identified, mutations in SOD1 and C9orf72 are the most common genetic causes...
متن کاملIdentification of diagnostic biomarkers by bioinformatics analysis in the inflamed and non-inflamed intestinal mucosa in Crohn\'s disease patients
Background: Crohn's disease (CD) is a type of inflammatory bowel disease (IBD) which despite the unknown details is generally related to genetic, immune system, and environmental factors. In this study, we identify transcriptional signatures in patients with CD and then explain the potential molecular mechanisms in inflamed and non-inflamed intestinal mucosa in these patients. Materials and Me...
متن کاملDoes Mesenchymal Stem Cell Therapy Help Multiple Sclerosis Patients? Report of a Pilot Study
Background: Mesenchymal stem cells (MSCs) with their potential to differentiate into mesodermal and non-mesodermal lineages have several immunomodulatory characteris-tics. These properties make them promising tools in cell and gene therapy. Objective: To evaluate the potential therapeutic applications of autologous MSC in improving clinical manifestations of MS patients. Methods: Ten patients w...
متن کامل